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Slow Quenching for a One-Dimensional Kinetic 
Ising Model: Residual Energy and Domain Growth 

R. Schi l l ing ~ 

Received May 17, 1988; revision received July 21, 1988 

A one-dimensional kinetic Ising model with Glauber dynamics subjected to a 
slow continuous quench to zero temperature is studied. For a rather general 
class of cooling schemes, described by a time-dependent temperature T(t), the 
mean domain size L(t) is calculated along with the residual energy eres(r ) as a 
function of the cooling rate r. If the attempt frequency e = c% exp(-e/kT), enter- 
ing into the transition rates, is temperature dependent (i.e., the barrier e is non- 
zero), the asymptotic growth of L(t) is given by L(oo)- L( t )~exp[ -e / k r ( t ) ] .  
For this case the residual energy exhibits a power-law behavior eres(r)~ r 6/21~ +61 
for r small, where 6 = 4J/e and J is the nearest neighbor coupling constant. For 

= 0 and for certain cooling schemes the residual energy is zero and L(t )~  t u2, 
independent of r. 

KEY WORDS: Glauber model; cooling rate dependence; domain growth; 
residual energy. 

1. I N T R O D U C T I O N  

In the last few years the study of systems subjected to an ins tan taneous  

quench has at tracted a lot of activity. One  of the pr imary  interests has been 
the doma in  growth and the asymptot ic  behavior  of the intermediate  struc- 
ture funct ion S(q,  t). The funct ion S(q, t) is believed to obey a scaling law 
which states that the (q, t) dependence is given by lql "L(t),  where L ( t )  ~ t ~' 

is the mean  l inear size of a domain.  Main ly  two types of models have been 
used: kinetic Ising models and  t ime-dependent  G i n z b u r g - L a n d a u  models. 
For  details and references see the review by G u n t o n  et al. (1) 

The aim of this paper  is to study the influence of a cont inuous  quench 

with f i n i t e  cooling rate. I use the one-dimensional  Ising model  with 
Glauber  dynamics.  At a certain time tl,, i.e., at a certain temperature  
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Tf= T(tf), the system will fall out of equilibrium and will freeze into a 
nonequilibrium state. Thus, apart from L(t), also the residual quantities, 
e.g., the residual energy eres(r) per particle, which is the energy of the frozen 
state with respect to the ground-state energy, becomes of particular 
interest. 

This model exposed to a heat bath with time-dependent temperature 
T(t) was solved by Reiss (2~ and discussed by him for a rapid quench. I 
investigate the opposite limit of slow quenching, for which I calculate the 
mean domain size L(t) for t ~ vo and the cooling rate dependence of the 
residual energy eres(r ). 

The use of a one-dimensional kinetic Ising model is motivated by 
recent work (3'4) on a chain of particles with anharmonic and competing 
interactions. In ref. 3 we showed that the configuration space can be 
decomposed into 2 u nonoverlapping cells (N is the number of particles). 
These cells can be labeled uniquely by a sequence ~r= {crn} of Ising 
variables an = +1, n = 1, 2,..., N. Furthermore, each cell contains exactly 
one local minimum of the potential energy, its energy being given by the 
Ising Hamiltonian: 

(11 
n ~ m  n 

where Jo, q, and h depend on the coupling constants of the interactions. Jo 
is always negative and ~/is between - 1 / 3  and + 1/3. The crucial property 
of the model is that the phase space state of the particles can easily be 
decomposed into a configurational part, described by the Ising variables, 
and a vibrational one. For low kinetic energy per particles (with respect to 
the barriers between adjacent cells), i.e., for low temperatures, the a n 
change slowly with respect to the fast vibrational modes. Therefore, one 
can consider the latter as a heat bath inducing transitions between the cells, 
i.e., transitions from ~ ~ a'. Consequently, the chain of particles may be 
regarded as a realization of a one-dimensional kinetic Ising model. 

In ref. 4 we calculated the residual energy eres(r) for this chain by 
numerical integration of the Newtonian equations of motion including a 
damping term. For finite damping constant r (corresponding to a cooling 
rate) the initially equilibrated configuration relaxed to one of the local 
minima. The data for ere~(r) could be fitted by a power law 

er~s(r) ~ r ~ 

with #=p~(t / )  for 0 . 0 2 < r < 0 . 8  and p=#2( t / )>#x (~ )  for 0 .004<r<0 .02 .  
We interpreted this power-law behavior as the freezing of independent two- 
level systems with energy A and barrier B, for which it was shown that (5~ 

e r e  s ~ r A / B  
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for r --, 0. The one-dimensional model exhibits a hierarchy of A/B values. 
Although the exponent #~ coincided approximately with one of these A/B 
values, /~2 did not. However, further numerical investigations have shown 
that the independent two-level system approach is not quite correct. This 
demands an improved description, which I believe to be a kinetic Ising 
model subjected to a continuous quench. 

2. THE M O D E L  

Because the coupling constants in ref. 4 were chosen such that h = 0 
and 0 < r /< 0.15, the Hamiltonian (1) is well approximated by the nearest 
neighbor Ising model 

H =  --JE ~nffn+l (2) 
n 

with J =  - 2 J 0 t  / > 0. To describe the kinetics, I use the Glauber dynamics. 
This is justified by the numerical simulation showing that the relaxation 
occurs through a sequence of single spin flips. Thus, I use for the transition 
probability for the j t h  spin ~6~ 

] wj(~) = ~ 1 - ~ aj(o)_ 1 + o'j+ 1) (3a) 

where 

2J 
7(T) = tanh - -  (3b) 

kT 

c~(T) = c% exp ( -  ~T)  (3c) 

e0 is a constant setting the time scale and e > 0 is related to the barrier 
heights. Because for the present model the barriers depend on a s_~ and 
aj+ 1, a more realistic Ansatz for e would be 

~ (T )=cq (T) [1  +c~2(T)(a j , -a j+~)]  (4) 

Nevertheless, I will use c~ from (3c). Since for rt small the barriers do not 
depend too strongly on ~j-1 and crj+ 1, this should not be a bad 
approximation. It furthermore makes it possible to solve the equation of 
motion for the spin correlation function exactly even with a time-dependent 
temperature. 
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M y  goal now is to calculate the mean  domain  size L(t) for t--* Go and 
the residual energy eres(r ). For  the one-dimensional  Ising model  these two 
quantit ies follow immediately  from the spin correlat ion function 
(aj~rj+ 1)(t) ,  which is related to the density of domain  walls pw(t) by 

pw(t) = ~[1 - < ~ j ~ j + ,  > ( t ) ]  (5a) 

Then 

L ( t )  = 1/p~( t )  (5b) 

and 

ere s = 2Jpw(t = oo) (5c) 

L(t) is measured  in units of the lattice constant.  Using the transit ion rate 
(3), one finds that  the correlat ion functions C.( t )= {a;aj+n)(t)  satisfy the 
differential equat ion (6/ 

C, = - 2 ~ C ,  + :~?(Cn- 1 + C~+ 1), 

with 

Co(t ) =- 1 

and where t ranslat ional  invariance is assumed. 

nva0  

(6) 

3. C O N T I N U O U S  Q U E N C H  

The cooling process will be described by a t ime-dependent  tem- 
perature  T(t) of the heat  ba th  determined by 

dT/dt = - r f  ( T) (7) 

r is the cooling rate and f ( T )  is positive and decreases to zero 
monotonica l ly  with T--*0 such that  T ( t ) ~ O  for t--*oo.:  For  example,  
f ( T )  = T describes exponential  cooling. In order  to calculate (ajaj+ ~)(t), 
one has to solve Eq. (6) with time-dependent coefficients e ( t ) =  e(T(t)) and 
7(t) = v(T(t)). This was done in ref. 2 by introducing a new dimensionless 
t ime scale 

fo r( t )= dt' ~(t') ?(t ' )  (8) 

2 TO guarantee that T=0 is not reached in a finite time, f has to approach zero at least 
linearly in T. This restriction is only for convenience and does not restrict the results. 
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The solution of Eq. (6) for n = 1 is then given by [here 7(z) denotes 
7(t(r))] 

2 fo Sin2O exp(2r c~ O) [ ;: -~r,) ] 
CI(r) 7trio dO l_2qbcosO+r/o2 exp - 2  dr' 

T , ,1 , (2r ' )  [ _ 2 f ~ ' & , ,  1 
+ ;oar ~ e x p  7(r_Z- r,,) ] (9) 

11 is the modified Bessel function and q0= Cl(O)=tanhJ/kTo is the 
equilibrium correlation function for To = T(0). Because the system is cooled 
to zero temperature, the final state depends sensitively on whether 
rm=r(oo)  is finite or not. At least for f (T)  decreasing algebraically with 
T--+0 it follows from (3b), (3c), and (7) that rm< oo if e>0 .  For e=0 ,  as 
is usually the case in Monte Carlo dynamics, it is r(t)...t, leading to 
rm = oo. In the following I will determine C~(r) for r --, r m, i.e., t --* ~ and 
r ~ 1. The r will be measured in units of c%. 

4. D O M A I N  SIZE A N D  RESIDUAL ENERGY 

4.1. For e > 0  

First of all we need r(t) for large t. Substituting (3b) and (3c) into (8) 
and using x =  e/kT(t) as an integration variable, one finds with (7) that 
(here and in the following I omit the technical details because the 
calculations, while straightforward, are laborious) 

1 z(t) ~ -  "~m - - -  g(T(t)) e ~/kr(,)[ 1 - e -a~/kr(')] (10a) 
g 

where 

and 

l f~  g(x)e_X tanh ~ x r m = - -  d x  (10b) 
r /kTo 

g(x) = a/[kx2f(a/kx) ] > 0 (10c) 

6 = 4J/e (10d) 

Note that r m ~ r -I, i.e., on the z scale the system has more "time" to find 
its ground state if r gets smaller, demonstrating that z and not t is the 
relevant quantity to describe the quenching. 

Cl(z) is the sum of two terms, C 1 and ~1. The term C1 contains the 
influence of the initial condition. Noticing that only small O contribute to 
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the integral in (71(t), one finds, using (10a) (quantities independent of t and 
r will be denoted by a0, al,  etc., and chosen such that a~>0), 

with 

01(t) ~ ~,l(t = ~ ) [ 1  +2r g(T(t))e-(l+a)~/~rIt)] (11a) 

where 

R(r)=r-e~'i-ff6) f~  k lnr  J (lab) 

Since C~(t = ~ )  can be neglected with respect to ffl(t = ~) ,  one finds in 
leading order in r, omitting the logarithmic corrections, the power law 
behavior 

e ~  ~ r 6/2(1 + 6) (14) 

for r ~ 1. Thus, the types of cooling does not influence the exponent, but 
only the logarithmic corrections [cf. (13b)], which is similar to behavior 
found for the two-level system/s) The power law (14) can also easily be 
obtained by more physical arguments: The relaxation rate spectrum for the 
Glauber model for fixed temperature is well known. Apart from the zero 
eigenvalue, the spectrum is given by ~7) 

2(q, T) = ~(T)[1 - ~(T) cos q] (15) 

C l ( t  =-- oo ) -~ a 1r3/2e --2a~ (1 lb) 

The second term ~l(t)  becomes 

~l(t) _~ ffl(t = oo) - 2(a2 ra- 1 + a3r(a 2)/2(1 + a)) g(T(t))e ~/k~'(t) 

From this result one obtains in leading order in exp [ - e /kT( t ) ]  {note that 
exp[-e/kT(t)] ~ 1 for rt> 1} with the use of Eq. (5) 

L(oo)_L(t)~(a2r a 1+a3r(6 2)/2(l+a))g(T(t)) e ~/~r(,I (12) 

where the t dependence of L(t) is completely determined by that of the 
bath temperature T(t). 

To calculate Cl(t= oo) and thus er~ it remains to estimate C( t=  oo), 
Substituting ~ = ~'m into the second term of Eq. (9), it follows for r ~ 1 that 

a 41/a / 2 6 + 1 \  
e l ( t=oo)~- l -aaR -TF~2-~-~)Ra/Z ' l+a)  (13a) 
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where q lies in the first Brillouin zone. It is reasonable to assume that the 
system falls out of equilibrium at that temperature T s for which the cooling 
rate equals the lowest relaxation rate. For  the kinetic Ising model this 
yields the criterion 

r = min 2(q, Tf) (16a) 
q 

and with the use of (15) one gets 

r = ~(Ti)[  1 - 7(Tf)] (16b) 

If r ,~ 1, the temperature Tf  will be much smaller than e/k and J/k. Thus, 
using J / k T f >  1, one finds for 7(Ts) in leading order 7 (Tf )~  1 - 2 e  -4J/~TI 
[-cf. Eq. (3b)]. With this result and (3c) one obtains from (16b) that 

r ~- 2 e -  (~ + 4J)/kTf 

which can be solved for e 2J/kr~ yielding 

e -2J/kry~ (r/2)a/~ + a)2 (1 7a) 

At T s the equilibrium correlation function r U takes the value 

qs-- q f (T f )  = tanh J /kT f~-  1 - 2e zJ/krl (17b) 

Substituting (17a) into (17b), one gets 

in agreement with (14). 

eres(r ) ~ ra/211 + a) 

4.2 .  F o r E = 0  

The main effect of e = 0 is that z( t)  ~_ t. In this section we consider only 
such cooling schemes for which T =  0 is reached only in an infinite time 
implying %, = oo. Taking this into account, it follows from Eq. (9) that 

Cl( t  = ~ ) =  1 

i.e., the residual energy is zero for all cooling rates r. Again as for e > 0 the 
asymptotic behavior of L( t )  stems from (~l(t). The asymptotic behavior of 
Cl(t) is easily deduced from (9), leading to 

L( t )  ~- (Tzt) 1/2 

independent of r. This result coincides with that obtained for a sudden 
quench to T =  0, where the t ~/2 behavior is found in general, i.e., also in 
higher dimension, provided the order parameter is nonconserved. ~:~ 
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5. D ISCUSSION A N D  CONCLUSION 

I have studied the one-dimensional kinetic Ising model with Glauber 
dynamics subjected to a slow quench. If the attempt frequency c~ is tem- 
perature dependent, i.e., the barrier e is nonzero, the asymptotic domain 
growth is proportional to exp [ - e / kT ( t ) ] .  Thus, the time dependence of 
L(t) is governed by that of the temperature. 

A more interesting result with respect to our recent work (4) is the 
power law behavior for the residual energy. The exponent 6/[2(1 + 6 ) ]  is 
not universal, but depends on the ratio 6=4J/e.  Qualitatively, this 
coincides with the behavior of the two-level system, only the functional 
dependence of the exponent on 6 being different. To understand this 
difference, consider the system at low temperatures before it falls out of 
equilibrium. In this case the most relevant spin configurations possess large 
ferromagnetic domains of up and down spins separated by walls. There are 
two processes leading to an energy relaxation: 

(i) Within a domain a spin may still flip between up and down, 
forming a two-level system. The freezing of these give a residual energy 
proportional to r~. (s) Such a contribution actually occurs in the present 
result [see the second term in (13a)]. 

(ii) The walls can diffuse and may become neighboring after a 
certain time, i.e., the configuration looks like 

. . . + + + + - - + + + . . .  

Now, the central down spin may relax. This mechanism determines the 
cooling rate dependence of the residual energy in leading order, as is 
obvious from (13a). It is the diffusion process altering the exponent. This 
becomes still more obvious if one considers the case J >> 5, i.e., 6 >> 1. Using 
this and r as a new variable, Eq. (6) reduces approximately to a pure 
diffusion equation for C1(~). Within the "time" r m ~ r  -1 [cf. (lOb)] only 
regions of length smaller than z~ 2 can approach local equilibrium, This 
implies that the mean domain size at Zm, i.e., at t = ~ ,  is given by 

and therefore 

L( oo ) ~r,~1/2 ~ r  -1/2 

e r e  s ~ rl/2 

in agreement with (14) for 6 >> 1. 

Further, I emphasize that the power law behavior is easily obtained 
from the physical criterion that the cooling rate r equals the lowest 
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relaxation rate at Ty. Although it is well known (8~ that the one-dimensional 
kinetic Ising model  shows nonuniversal  behavior  for the dynamical  critical 
exponent,  one still expects a power law behavior  for eres(r)if the dynamics 
is changed. 

To make a reasonable compar ison  with the numerical results for 
eros(r), one has to investigate the chain of particles for r values down to 
a b o u t  10 - 4  and for different r/. This work is in progress. For  q = 0.135 
(yielding 4 J =  0.028) and 3.3 x 10 - 4  ~ r ~< 2 x 10-2  we have already found a 
power law behavior  with exponent  equal to 0.282_+0.03. For  the chain 
model  one must  distinguish between two relevant barriers Bi ( i =  1, 2): 
B1 ~ 0.0126 for the ( +  - + ~ + + + ) transition and B 2 ~ 0.0244 for the 
( + - -  ~ + + - )  transition. Using for e the values of B1 and B2, one 
finds for the exponent  in (14) the value 0.345 and 0.256, respectively. The 
numerical value is just in between. The analytical result could still be 
improved using Eq. (4) as dynamics, thus taking the a dependence of the 
barriers into account.  

Finally, we mention that for vanishing barriers and a certain class of 
cont inuous quenches to zero- temperature  we have found zero residual 
energy and a t 1/2 behavior  for the domain  growth,  which is also found for 
instantaneous quenches, i.e., a finite cooling rate does not  influence the 
growth law. 
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